

Understanding and Exploring the Network with Stochastic Architectures

Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Lab, Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University

Zhijie Deng, Yinpeng Dong, Shifeng Zhang, Jun Zhu

Generalization capacity to unseen architectures

- **Can the trained NSA generalize to unseen architectures for broader** exploration?
- The histograms for the validation accuracy of 100 architectures seen during training vs. those for 100 unseen architectures (tested on NSA-i):

> These results validate the generalization capacity of NSA, perhaps because the shared weights learn common structures of the architectures. As shown, we can train a NSA with a suitable number of architectures (e.g., [500, 5000]) to conjoin architecture generalization and accuracy.

Applications of NSA

□ *Model ensemble with stochastic architectures* (image classification)

Method	# params	CIFAR-1	0	CIFAR-100		
		Test error $(\%) \downarrow$	$ECE\downarrow$	Test error $(\%) \downarrow$	ECE \downarrow	
WRN-28-10 [49]	36.5M	4.00	-	19.25	-	
DenseNet-BC [14]	25.6M	3.46	-	17.18	-	
ENAS + CutOut [30]	4.6M	2.89	-	-	-	
DARTS + CutOut [22]	3.4M	2.83	-	-	-	
WRN-28-10 [†]	39.5M	2.93	0.0140	16.75	0.0672	
WRN-28-10 [†] , MC dropout	39.5M	3.23	0.0107	17.16	0.0454	
Average of individuals	39.5M	2.97	0.0153	17.02	0.0446	
NSA-id	39.6M	2.75	0.0032	16.44	0.0212	

Uncertainty Estimation (out-of-distribution detection)

adopt the mutual information between the prediction of incoming data and the variable architecture as the uncertainty measure

Method	OOD	PGD1-2-1		PGD2-3-1		PGD3-4-1	
	AUC ↑	Acc. \uparrow	AUC \uparrow	Acc. \uparrow	AUC ↑	Acc. \uparrow	AUC ↑
WRN-28-10 [†] , MC dropout	0.935	0.622	0.735	0.345	0.694	0.183	0.564
NSA-id	0.970	0.630	0.737	0.401	0.705	0.263	0.618

Conclusion

- □ We reveal un-identified training & test properties of NSA.
- □ We observe two issues and propose two solutions.
- □ We further provide valuable insights on how to train a NSA, hopefully benefiting NAS.
- □ We apply NSA into three appropriate scenarios.

